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Stabilization of a low-density plasma in a simple magnetic 
mirror by feedback control? 

C. X. LASHMORE-DAT'IES 
UKAEA Research Group, Culham Laboratory, Abingdon, Berkshire, England 
M S .  received 28th October 1970 

Abstract. In  this paper the conditions for stabilizing an electrostatic instability 
occurring in a simple magnetic mirror using feedback techniques are discussed. 
The calculation is made in cylindrical geometry using a model similar to that 
introduced in 1968 by Arsenin and Chuyanov. In  the first part of the paper a 
diffuse plasma is considered and the effect of varying the locations of the sensing 
and suppressing systems is examined in the following cases : both suppressor 
and sensor outside the plasma, only the sensor inside the plasma, and 
finally both sensor and suppressor inside the plasma. The density threshold 
is improved by factors of 4, 12 and 36 in the three cases. In  the second part of 
the paper a sharp boundary plasma is considered but phase shift and frequency 
response are included in the feedback terms. The Nyquist method is used to 
find a frequency response giving improved stability. 

1. Introduction 
The possibility of stabilizing a high-temperature plasma by means of feedback 

methods has recently received a good deal of attention. Since feedback techniques 
operate with the perturbed plasma quantities it was hoped that such methods might 
prove to be both simpler and cheaper than alternative approaches if indeed they exist, 

The  electrostatic instabilities occurring in a plasma can be divided into two general 
types: dissipative and reactive (Hasegawa 1968). A characteristic feature of these 
instabilities is that, for the former, the growth rate is less and usually much less than 
the oscillation frequency, whereas, for the latter case, the growth rate is of the same 
order as the oscillation frequency and often larger. The  dissipative instability is 
produced by one wave (whose energy can have either sign) being driven unstable 
owing to a net exchange of energy between the oscillation and the medium. The  
reactke instability results when two waves whose energies are opposite in sign become 
degenerate in their oscillation frequency but there is no net flow of energy between 
the oscillation and the medium. In this case the exchange of energy can be thought 
of as between the two modes of oscillation. 

The  conditions for stabilizing the two types of instability are very different, at 
least at threshold (Taylor and Lashmore-Davies 1970). Most of the experiments 
(and theories) on plasma stabilization by feedback have dealt with dissipative instabili- 
ties (Parker and Thomassen 1969, Keen and Aldridge 1969, Simonen et al. 1969, 
Chen and Furth 1969, Keen 1970, Furth and Rutherford 1969). An exception to this 
is provided by the work of Arsenin and Chuyanov (1968) and Chuyanov et al. (1969), 
where the problem of stabilizing a simple magnetic mirror against a flute-type 
instability has been considered. The  feedback technique considered by Arsenin and 
Chuyanov consisted of sensing and suppressing from surfaces outside the plasma. 
This could only be expected to influence surface or large-scale ( w  radius of the 
system) modes. However, it is these modes which are usually the most dangerous. 

1970, ed T. K. Chu and -4. W. Hendel (Princeton: AIP Conference Proceedings). 
-f This work appears in abbreviated form in Feedback and Dynamic Control of Plasmas, 
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A general theory of plasma stabilization by feedback has recently been given by 
Taylor and Lashmore-Davies (1970). However, the theory only applies close to the 
stability threshold and for small feedback signals. Here, we consider only the specific 
case of the reactive instability discussed by Arsenin and Chuyanov (1968) but allow 
for arbitrarily large feedback signals. Arsenin and Chuyanov confined their analysis 
to surface modes and rather simple feedback signals. 

There are three main aims of this paper. The  first is a consideration of the plasma 
body waves as well as the surface waves. A characteristic feature of plasma body 
waves in a bounded plasma is the occurrence of nodes in the wave amplitude. The  
presence of these nodes may be expected to have an important effect on attempts to 
stabilize the plasma using feedback techniques. 

The  second aim of the paper is to compare the effect of different locations of the 
sensing and suppressing surfaces. The following three cases have been analysed 
and compared: the sensing and suppressing surfaces both outside the plasma, 
the sensing surface inside the plasma, and both sensing and suppressing surfaces 
inside the plasma. 

Finally, in standard control theory the Kyquist (1932) diagram is much used in 
order to design a frequency response of the suppressor system giving the desired 
properties. We shall use the same technique to analyse the effect of different frequency 
responses on stability. 

2. The dispersion equation with feedback 
We consider a cylindrical plasma of infinite length whose axis coincides with a 

uniform constant magnetic field. The  plasma is nonuniform and extends from the 
origin to some radius a. We simplify the problem by introducing a fictitious radial 
gravitational force to simulate the effect of curvature and gradients in the zero-order 
magnetic field. For electrostatic perturbations, and assuming the perturbed quantities 
vary as 

cp(r, t )  cc y ( r )  esp{i(mO- wt ) )  

we obtain the equation already given by Arsenin and Chuyanov (1968) : 

where x is a normalized length y/a, N(x) gives the density profile and w* is the preces- 
sion frequency of the ions due to the gravitational drift (U" = g/Q,a) where the 
radial gravitational force was taken as g(r) = gr/a. The remaining quantities have 
their usual meaning and wpi  refers to the cylinder axis. The  boundary conditions 
(Arsenin and Chuyanov 1968) at x = 1 are 

where pp is the solution of equation (1) in the plasma, pvl is the solution from x = 1 
to x = bia, and pY1I is the solution for x > b/a.  
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At this point we introduce the effect of feedback into the model. Following 
Arsenin and Chuyanov (1968) this is done by imposing certain conditions at the 
surface Y = b. Arsenin and Chuyanov specified the potential at Y = b whereas we 
find it more convenient (mathematically) to add the effect of feedback by introducing 
a surface charge at Y = b. Assuming that the fluctuating potential has been sensed 
at some other surface, then a surface charge proportional to the signal detected by 
the sensor is fed back at r = b. In  this idealized model it is assumed that the mode to be 
stabilized can be sensed and fed back perfectly, that is, the sensing and suppressing 
surfaces consist of an infinite number of infinitesimal electrodes in order to follow 
the spatial variation ( N exp(im6)). In  practice, of course, only a few large electrodes 
are used. (For experimental details see Chuyanov et al. 1969.) I t  is also assumed 
that the details of how the suppressor surface receives its charge do not affect 
greatly the fields within the plasma, and hence the stability conditions. 

We may now state the feedback conditions as follows. At r = b we introduce a 
surface charge density 

where 6 is real and represents the amplification of the feedback circuit, and we have 
assumed the sensor is at Y = a. The boundary conditions at x = b/a are then 

The  final boundary condition is that 

cpV1I -+O as x -+ CO. (7) 

3. Stabilization conditions 

cases. 

3.1 .  Uniform plasma with sharp boundary at x = 1 

regions-plasma, vacuum I and vacuum 11-are then: 

We now calculate the conditions required for stabilization in a number of special 

This case corresponds to N(x) = 1. The  solutions of equation (1) in the three 

Bp = Ax"' (8) 

(9)  

Y"I1 = Dx-lml. (10) 

I = Bxlml + c x - i m i  
CTV 

These solutions represent surface waves. Applying the boundary conditions given 
by equations (2), (3) and (5)-(7) we obtain the dispersion relation 
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The conditions for stable oscillations are 

and 

where we have used the condition w* < R,. Conditions (12) and (13) are equivalent 
but not identical to those of Arsenin and Chuyanov (1968) because we consider 
charge being fed back and not potential. For stability I S /  must exceed some critical 
value. 

3.2. Xonuniform plasma with parabolic densit)$ projile 
For this case N ( x )  = 1-x2. If we also consider the low-density case such that 

wpi2 < Qi2 

then equation (1) reduces to Bessel's equation. The plasma solution is then 

QP = AJm(P4 (14) 
where the Bessel function of the second kind has been discarded since it diverges at 
the origin and 

Consider the case without feedback for a moment. For a given m number we have 
an infinite set of radial modes each of which becomes unstable above a certain threshold 
of density. It is easy to see (for example, by considering the plasma bounded by a 
perfect conductor) that the first radial mode has the lowest threshold, the second, the 
next lowest, and so on. Therefore the stability threshold for a given m number is 
determined by the first radial mode. 

Now consider the charge fed back at x = biu as before. The vacuum solutions 
are again given by equations (9) and (IO) and, applying the boundary conditions 
(2), (3)' (5)-(7) again, we obtain the dispersion relation: 

where we have specialized to the m = 1 case. Without feedback (6 = 0) the stability 
threshold is given by 

wpip xo12w* - < 
SZi2 8 SZ, 

where xol is the first zero of the J, Bessel function. The  left hand side of equation (16) 
is plotted in figure 1. With the aid of this diagram we see that for 6 & 1 the stability 
threshold is given by 

where xll is the first zero of J1. This represents an improvement in density of 
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approximately 2. However, for negative feedback? figure 1 shows that there is an 
optimum amplification given by 

when the threshold density is increased by the factor 

6 -  - 2  

(qJTF Threshold density with feedback 
= 4. (19) -- - 

Threshold density without feedback 

It should be pointed out that the condition given in equation (18) is actually for 
infinite amplification. However, once 6 9 1, this value of the threshold is ap- 
proached very closely and any further increase in amplification gives only a negligible 

Figure 1. Plot of left hand side of !mi = 1 dispersion relationpJo(p)/Jl(p) = -6 
when sensor and suppressor are both outside the plasma, 

improvement. This is because the effect of the feedback is to reduce the value of the 
signal that is being sensed, that is, the larger the amplification the smaller the signal to 
be amplified. However, in this example, increasing the amount of positive feedback 
increases the stability, if only slightly, whereas increasing the amount of negative 
feedback above the optimum level decreases stability. 

-4 further improvement in the threshold density can be obtained by sensing at a 
surface within the plasma (at x = xL where x1 < 1) but still feeding back outside the 
plasma at x = x2 (x2 > 1). The  dispersion relation then becomes 

Notice that for Iml = 1 equation (20) is independent of x2, that is, for lml = 1 the 
dispersion properties of the system do not depend on the position of the feedback 
surface, provided it is outside the plasma. 

t In this paper 6 > 0 is referred to as positive feedback and 6 < 0 as negative feedback, 
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The function on the left hand side of equation (20) has been plotted in figure 2 
for m = 1. (Note the dispersion relation is independent of the sign of the mode 
number m.) With the aid of figure 1 we can find the new threshold density corres- 
ponding to the feedback parameter 6. From figure 2 we can see that this time positive 

1 

- 4- 
- 5' 

I 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I !I I 

I 
I 

Figure 2. Plot of left hand side of liizl = 1 dispersion relation 
pJa(p)/Ji(p/2) = -8 

when suppressor is outside the plasma and sensor is inside the plasma at x = 4. 

feedback is more effective than negative feedback (i.e. the larger the value of p at 
which a root occurs the larger is the threshold density). Furthermore there is an 
optimum positive value of 6 at which the threshold density is a maximum. From 
figure 2 we can see that this optimum value of 6 is approximately 3. The ratio of the 
threshold densities with and without feedback is now given by 

Thus for a very modest amplification (6 N 3) for positive feedback the density 
threshold has been increased by an order of magnitude. In the previous example 
where the suppressor was outside the plasma a similar level of negative feedback 
produced an increase in the threshold density by a factor of approximately 4. 

With such a large increase to the density threshold for the m = 1 instability it is 
interesting to calculate the threshold for the m = 2 instability. For m = 2 the left 
hand side of equation (20) is plotted in figure 3.  It can be seen that positive feedback 
is more effective than negative feedback in the sense that approximately the same 
level of stability is produced for less amplification. For 6 > 4 the ratio of the threshold 
densities with and without feedback is 
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Thus, for 6 > 4, both m = 1 and m = 2 modes are suppressed up to densities an 
order of magnitude higher than the value without feedback. (Note: since we are 
neglecting the frequency response of the suppressor circuit we assume it can respond 
to all frequencies.) 

I 

-I -*I 2 

-1 6- 

-20- 

Figure 3. Plot of left hand side of Im; = 2 dispersion relation 
PJi(P)/J2(Pi2) = - 6 % ~  

when suppressor is outside the plasma at x = xz and sensor is inside at x = +. 

The  final example in this section is where both sensing (x = xl) and suppressing 
surfaces (x = x2) are inside the plasma. Assuming x2 > x1 we must consider the 
plasma solutions for the two regions: 

0 < x < xz +qpI  

x2 < x < 1 +'ppII. 

= BJ,(px) + CYm(Px). 

vpI is given by equation (14) and yP1I by 

(23 1 

y v  = Dx-"1. (24) 

For x > 1 the vacuum solution is 

Using the boundary conditions given in equations (2), (3), and (5)-(7) we obtain the 
following dispersion relation : 

We again obtain the roots of this equation graphically and figure 4 is a plot of the left 
hand side of equation (25) for m = 1. From figure 4 we can see that again both 
positive and negative feedbacks produce an improvement in the critical density but 
that positive feedback gives the biggest improvement. For 6 2 14 the improvement 
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Figure 4. Plot of left hand side of ,nzl = I dispersion relation: 

when both sensor and suppressor are inside the plasma at x = 3 and x = 4 res- 
pect ively. 

F(p) 3 I J O  ( @ ) I  JI ( P  12)) {PI (3~314) J o  (@) - J 1 (3~ /4 )Y o(p)} - = &8 

in the critical density is given by 

Sote  that if S is made too large the density threshold is reduced by a factor of 4! In  
other words S must be in the range 

14 G S < 200. (27) 

4. Frequency dependence of Suppressor 
So far we have ignored the frequency dependence of the suppressor (i.e. we have 

assumed constant amplification without phase shift from zero frequency to infinity). 
The  effect of this has been that the modes of oscillation, although stable, remain 
undamped. In  this section we consider the effect of frequency dependence of the 
suppressor and hence phase shift. For the sake of simplicity we again return to the 
sharp boundary case of 9 3.1. We write the dispersion relation again for this case: 

where S has now been written explicitly as a function of w .  We now consider three 
specific cases of complex or frequency-dependent feedback. 

4.1. Feedback proportional to spatial derivative 
For this case we can take 

6 = a+$. 

Substituting this into equation (28) and solving for w we can see that there is always 
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I m o  > 0 

j3 = 0. 
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That is, any phase shift other than 0 or 7i is destabilizing. 

4.2. Feedback proportional to time deriaatiae 
This time we can write for 6 

The dispersion equation for = 1 can be written in the form 

?fa2 opi2 w* 
(33) 

. P  
A Iml Qi A 

u 2 + m w * o + i - o W 2 ( o + m w * ) +  = 0 

where 
% i 2  A = Z + -  
Q2 + & *  

The Nyquist (1932) diagram is often used in plasma stability problems and it is 
particularly useful in the control problem being considered here. The  result of such 
an analysis on equation (31) shows that there are no conditions corresponding to this 
form of feedback for which the plasma is stable-the plasma is always unstable. A 
typical Nyquist diagram for this case is shown in figure 5 .  

1 

Figure 5 .  Kyquist plot for frequency response of suppressor proportional to time 
derivative ( = c( -imp). Contour encircles origin, system unstable. 

4.3. Feedback proportional to the time integral 
For this case we take 

irl 
6 ( w )  = a+-. 

w 

The dispersion equation can now be written in the form 

(34) 

( 3 5 )  
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If we let 

then, since we take w* positive, B is a positive definite quantity. The Nyquist diagram 
of equation (34) has six possibilities given by 

4 B  
-- < 0 
A 
4B q/o" > 0 
A qlw" < 0 

0 < -- < m2 

4B 
-- > m2. 
A 

and 

Only one of these six possibilities gives stability, namely 

4BIA < 0 q/w* < 0. 

The  Nyquist diagram for this case is shown in figure 6. Thus, the conditions for 

I 
Figure 6. Kyquist plot for frequency response of suppressor proportional to time 

integral (=a +iTiw). Contour does not encircle origin, system stable. 

stabilization with integral feedback are 

WPi2 
-@. > . 2 + -  

ai2 * 

When the conditions given by equations (37) and (38) are satisfied the plasma is 
stabilized and the modes of oscillation are damped. Furthermore, the phase shift is 
no longer critical since by equations (37) and (38) one quarter of the phase plane 
allows stability. 

5. Conclusions 
In  this paper we have examined the effect of feedback control on a flute-type 

instability occurring in a low-density plasma. The instability is of the reactive type, 
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that is, it is due to two modes of oscillation, whose energies are of opposite sign, 
becoming degenerate in their frequency. The conditions for feedback stabilization 
have been analysed for a number of special cases. In  the first set of examples the 
frequency response of the suppressor system is neglected and amplification at all 
frequencies without phase shift is assumed. In  all cases the electrostatic potential 
was sensed and charge was fed back. 

First of all a surface mode was considered and both positive and negative feedback 
produced stability for large enough amplification. The  resulting modes mere purely 
oscillatory. 

Sext  the effect of feedback on body waves was considered in the following three 
cases : (i) the sensing and suppressing surfaces were both outside the plasma, (ii) only 
the suppressing surface was outside, (iii) both surfaces were inside the plasma. 
Again both positive and negative feedback quenched the instability. However, when 
the sensing and suppressing surfaces were both outside the plasma, negative feedback 
was more effective, whereas, in the other two cases, positive feedback appeared to be 
more efficient. 

A characteristic feature of the body-wave case was the existence of an optimum 
value of the amplification at which the density threshold reached its maximum value. 
For a further increase in amplification the density threshold for instability either 
remained almost constant or was actually reduced. This fact appeared to be related 
to the fact that the effect of the control system is to reduce the signal being sensed. 
Under these conditions it seems reasonable that there should be an optimum level 
for the amplification. For the first case the density threshold was increased by a 
factor of 4 by the control system, in the second case byafactor of 12, and the last 
by 36. 

In  the above three cases the results were obtained for the m = 1 instability which 
has the lowest threshold, In  the second case it was also verified that the m = 2 
instability was stabilized under the conditions required to quench the m = 1 in- 
stability. 

In  the last part of the paper the frequency response and phase shift of the sup- 
pressor system was investigated. For phase shift without frequency dependence all 
phases (except 0 and X )  are destabilizing, even for an initially stable plasma. 

frequency response corresponding to the time derivative is also destabilizing 
but the time integral response was shown to produce stability under certain conditions, 
This last case should be useful since it results in damped modes of oscillation and 
allows stability over one quarter of the phase plane instead of at just two values. 

It should be remarked that the type of frequency response which is stabilizing 
iyill of course depend on the instability. For some other instability the time derivative 
might be stabilizing and the time integral response destabilizing. 

Finally, although the analysis in this paper refers to the specific example of a 
flute instability in a magnetic mirror, the results should have a more general relevance 
since effects such as mode structure, position of sensing and suppressing elements, 
and the frequency response of the suppressor will clearly be important in other 
confinement systems. 
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